Contoh Soal Limit Tak Hingga Dan Pembahasannya

Contoh Soal Limit Tak Hingga Dan Pembahasannya

Contoh soal dan pembahasan limit fungsi aljabar

Daftar Isi

1. Contoh soal dan pembahasan limit fungsi aljabar


a.lim 4
x >3

b.lim 3x
x >3
c.lim 3x/2
x->2
sorry cmn soalnya aja

2. Contoh soal dan pembahasan limit kelas 10


Jika f(x) = x2 − 6x + 8, tentukan interval f(x) naik dan interval f(x) turun!

Jawab :
f '(x) = 2x − 6

f(x) naik ⇒ f '(x) > 0
⇔ 2x − 6 > 0
⇔ 2x > 6
⇔ x > 3

f(x) turun ⇒ f '(x) < 0
⇔ 2x − 6 < 0
⇔ 2x < 6
⇔ x < 3

Jadi f(x) naik pada interval x > 3 dan turun pada interval x < 3.

3. soal dan pembahasan matematika Un tentang limit


digoogling saja banyak kok..

4. contoh soal menentukan limit fungsi bentuk tak tentu


ABCDEFGHIJKLMNOPQRSTUVWXYZ

5. buatkan 2 soal limit turunan beserta pembahasannya


Soal No. 1
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 3x + 2x − 5x
b) f(x) = 2x + 7x
Pembahasan
Rumus turunan fungsi aljabar bentuk ax^n
[tex]f( \times ) = {ax}^{n} \: menghasilkan \: f {(x)}^{1} = an {x}^{n - 1} \\ y = x a {x}^{n} \: menghasilkan \: {y}^{1} = an {x}^{n - 1} [/tex]
Sehingga:
a) f(x) = 3x + 2x − 5x
f ‘(x) = 4⋅3x + 2⋅2x − 5x^1-1
f ‘(x) = 12x + 4x − 5x^0
f ‘(x) = 12x + 4x − 5
b) f(x) = 2x + 7x
f ‘(x) = 6x^2 + 7

Soal No. 2
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 10x
b) f(x) = 8
c) f(x) = 12
Pembahasan
a) f(x) = 10x
f(x) = 10x^1
f ‘(x) = 10x^1-1
f ‘(x) = 10x^0
f ‘(x) = 10
[tex] {x}^{0} = 1[/tex]
b) f(x) = 8
f(x) = 8x^0
f ‘(x) = 0⋅ 8x^0-1
f ‘(x) = 0
[tex]a {x}^{0} = a[/tex]
c) f(x) = 12
f ‘(x) = 0


Itu, mohon agar divote

6. buatlah 4 contoh soal limit trigonometri


Mapel : Math

Jawab tuh.......
#Trigonometri

7. contoh soal dan jawaban limit fungsi.​


Jawaban:

lim

x → 2

2x = …

Pembahasan / penyelesaian soal

lim

x → 2

2x = 2 . 2 = 4


8. contoh soal limit fungsi trigonometri


Tentukan hasil dari soal limit berikut  

Tentukan hasil dari soal limit berikut
[tex] \lim_{x \to \inft0} \frac{sin 3x}{x} [/tex]=1
[tex] \lim_{x \to \inft0 \frac{1-cost}{sint} } [/tex]=0

9. contoh soal limit beserta jawabanya


Semoga membantu:)
Maaf klo gak jelas fotonya:)

10. contoh soal limit tak tentu nol per nol


Jawab:

[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}=\cdots[/tex]

Penjelasan dengan langkah-langkah:

Tes limit

[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}=\frac{0}{0}[/tex]

Gunakan aturan L'Hopital untuk mempermudah penyelesaian

[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}\\=\lim_{x\to 2}\frac{4x^3-9x^2+4x-4}{4x^3-15x^2+26x-24}\\=\frac{0}{0}[/tex]

Lakukan lagi hingga hasil nya tidak [tex]\displaystyle \frac{0}{0}[/tex]

[tex]\displaystyle \lim_{x\to 2}\frac{4x^3-9x^2+4x-4}{4x^3-15x^2+26x-24}\\=\lim_{x\to 2}\frac{12x^2-18x+4}{12x^2-30x+26}\\=\frac{16}{14}\\=\frac{8}{7}[/tex]

Cara biasa

Faktorkan x⁴ - 3x³ + 2x² - 4x + 8 dengan metode Horner

[tex]\begin{array}{cccccc}\multicolumn{1}{c|}{} & 1 & -3 & 2 & -4 & 8\\\multicolumn{1}{c|}{2} & & 2 & -2 & 0 & -8\\\cline{2-6} & \multicolumn{1}{|c}{1} & -1 & 0 & -4 & \multicolumn{1}{|c}{0}\\\cline{6-6}\multicolumn{1}{c|}{2} & & 2 & 2 & 4\\\cline{2-6} & 1 & 1 & 2 & \multicolumn{1}{|c}{0}\\\cline{5-5}\end{array}[/tex]

Jadi

[tex]\displaystyle x^4-3x^3+2x^2-4x+8=(x-2)^2(x^2+x+2)[/tex]

Faktorkan x⁴ - 5x³ + 13x² - 24x + 20

[tex]\begin{array}{cccccc}\multicolumn{1}{c|}{} & 1 & -5 & 13 & -24 & 20\\\multicolumn{1}{c|}{2} & & 2 & -6 & 14 & -20\\\cline{2-6} & \multicolumn{1}{|c}{1} & -3 & 7 & -10 & \multicolumn{1}{|c}{0}\\\cline{6-6}\multicolumn{1}{c|}{2} & & 2 & -2 & 10\\\cline{2-6} & 1 & -1 & 5 & \multicolumn{1}{|c}{0}\\\cline{5-5}\end{array}[/tex]

Jadi

[tex]\displaystyle x^4-5x^3+13x^2-24x+20=(x-2)^2(x^2-x+5)[/tex]

Maka

[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}\\=\lim_{x\to 2}\frac{(x-2)^2(x^2+x+2)}{(x-2)^2(x^2-x+5)}\\=\lim_{x\to 2}\frac{x^2+x+2}{x^2-x+5}\\=\frac{2^2+2+2}{2^2-2+5}\\=\frac{8}{7}[/tex]


11. contoh soal Limit fungsi beserta Penyelesaiannya.


Contoh nya

Lim (2x^3-8x) =2-(-1)^3-8(-1)
X=-1 =(-6)-(-7)=48




12. contoh soal teorima limit utama


contoh soal dan pembahasan nya


Nomor 1

A. 0
B. 3
C. 5
D. 7
E. Tak hingga

Pembahasan
Limit seperti soal diatas akan menghasilkan angka yang dilimitkan yaitu 7.
Jawaban: D 

Nomor 2
 
A. 1
B. 3
C. 4
E. x
D Tak hingga

Pembahasan
Ganti x = 3
3 + 1 = 4
Jawaban: C

Nomor 3
 
A. 0
B. 1
C. 5
D. 6
E. Tak hingga

Pembahasan
Ganti x = 0
5 . 0 + 1 = 1
Jawaban: B

Nomor 4 
 
A. 0
B. 1
C. 2
D. 3
E. 4

Pembahasan
Ganti x = 0
(5 . 0 - 1) (0 - 1) = (-1) . (-1) = 1
Jawaban: B

Nomor 5
 
A. 1
B. 2
C. 5
D. 10
E. Tak hingga

Pembahasan
Ganti x = 10
(10 + 2) / (10 - 4) = 12/6 = 2
Jawaban: B

13. tolong berikan contoh soal tentang limit serta pembahasannya TAPI dalam KEHIDUPAN SEHARI haritolong aku dong . tugasnya mau diperiksa besok


misalnya kamu pedagang rujak, kan variablenya banyak ada ketimun,bengkoang,nanas,dll nah limit digunakan untuk menghitung keuntungan kamu secara maksimal. ( pake turunan,,asal muasal turunan kan dari limit )
juga berlaku tukang lotek dll ,

untuk mendeteksi kebcoran aer di PDAM, kan gak tahu pipanya bocornya dimana , itu di itungnya
pake limit agar tahu posisi letak pipanya yang bocor

14. contoh soal limit tak hingga beserta jawabannya​


Jawab:

6

Penjelasan dengan langkah-langkah:

[tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{x^2+2x}-\sqrt{x^2-6x+1} \right )[/tex]

Ingat lagi rumus cepat limit tak hingga [tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{ax^2+bx+c}-\sqrt{ax^2+qx+r} \right )=\frac{b-q}{2\sqrt{a}}[/tex]. Manipulasi soal sehingga melibatkan rumus nya

[tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{x^2+2x}-\sqrt{x^2-6x+1} \right )\\=\lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-2x+x-\sqrt{x^2+2x}+x-\sqrt{x^2-6x+1} \right )\\=\lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{4x^2}+\sqrt{x^2}-\sqrt{x^2+2x}+\sqrt{x^2}-\sqrt{x^2-6x+1} \right )\\=\frac{16-0}{2\sqrt{4}}+\frac{0-2}{2\sqrt{1}}+\frac{0-(-6)}{2\sqrt{1}}\\=4-1+3\\=6[/tex]


15. Poin Gede !!! Tolong Yang Jago MatematikaBuatlah Contoh Soal Matematika Bebas Tentang : Limit Fungsi Trigonometri Beserta Penjelasan dan Pembahasannya.Mohon Bantuannya ya ^_^


Kelas : XI
Pelajaran : Matematika
Kategori : Limit Fungsi Trigonometri

Pembahasan terlampir

16. contoh soal limit fungsi perkalian sekawan


maaf klo salah

smga bener

Tetap Semangat


17. soal dan pembahasan limit di tak hingga dengan mengalikan bentuk akar


Mengalikan bentuk akar sekawannya di penyebut

18. Soal ini membahas tentang limit menjawabnya menggunakan cara mohon dibantu ya,soalnya gurunya killer


pembahasan terlampir

19. Tolong buatin soal limit trigonometri serta pembahasannya juga, please bantu aku


Itu contoh soal limit trigonometri

20. 5 contoh soal limit tak hingga dengan penyelesaiannya!


semoga membantu tapi cuma satu aja sorry

21. contoh soal limit sin cos tan​


silakan lihat channel youtube "Supaat Mengajar".

disitu ada banyak contoh soal dan pembahasan limit fungsi trigonometri.

semoga membantu


22. Contoh soal penggunaan limit fungsi (pemetaan gradien garis singgung kurva) beserta dengan pembahasannya! Minimal 2 soal.. Terimakasih.. :) ^_^


1. Tentukan gradien garis singgung pada kurva
f(x) = x² di titik dengan absis 2
Penyelesaian :
m = lim f ( 2 + Δx - f (2) = lim (2 + Δx)² - 2²
                     Δx                          Δx
    = lim 4Δx + Δx² = lim 4 - Δx = 4
                  Δx
Jadi, gradien garis singgung kurva f(x) = x² di titik dengan absis x = 2 adalah m = 4.
2. Tentukan gradien garis singgung pada kurva
f(x) = x3 di titik dengan absis 3
Penyelesaian :
m = lim  f ( 3 + Δx - f (3) = lim (3 + Δx)³ - 3²
                     Δx                          Δx
    = lim 3³ + 3.3² Δx + Δx³ - 3³
    = lim 27Δx + 9(Δx)² + (3x)³  = lim (27 - 9 + (Δx)²) = Δx
                        Δx                                        Δx
    = lim 27 + 9Δx + Δx² = 27

Itu yg ngajarin kk ku, kak.. semoga bermanfaat

23. hasil dari limit ini adalahdisertai pembahasan​


cara 1 kali akar sekawan..

Lim x--> 5

(x-5)/(√(x+4)-3) (√(x+4)+3/(√(x+4)+3

Lim x --> 5

(x-5) (√(x+4)+3) / (x+4-9)

Lim x --> 5

(x-5) √(x+4)+3) / (x-5)

coret (x-5)

Lim x--> 5

√(x+4)+3

masukkan nilai x = 5

√(5+4)+3 = √9+3 = 3+3 = 6

cara 2) pake dalil l'hopital

Lim x--> 5

1/ (1/2. 1/√(x+4)

masukkan nilai x = 5

1/ (1/2.1/√(5+4) =

1/(1/2.1/√9) =

1/(1/2.1/3) =

1(1/6) =

6


24. 10 Soal matematika Fungsi Limit dan pembahasannya? Tolong :)


cari di pakanangblgspot.com aja... banyak banget pembahasannya...


25. contoh soal limit dan limit fungsi aljabarplis bantu jawab​


Jawab:
Mapel: Matematika
Kelas: 11

Contoh Soal 1:

Tentukan nilai limit berikut:

lim(x->3) (2x - 5)

Jawaban 1:

Untuk menentukan nilai limit tersebut, kita hanya perlu menggantikan x dengan nilai yang mendekati 3. Jadi, jika kita substitusikan x dengan 3, kita dapat menghitungnya sebagai berikut:

lim(x->3) (2x - 5) = 2(3) - 5 = 6 - 5 = 1

Jadi, nilai limit dari fungsi tersebut saat x mendekati 3 adalah 1.

Contoh Soal 2:

Tentukan nilai limit berikut:

lim(x->-2) (x^2 + 3x - 2) / (x + 2)

Jawaban 2:

Untuk menentukan nilai limit tersebut, kita hanya perlu menggantikan x dengan nilai yang mendekati -2. Jadi, jika kita substitusikan x dengan -2, kita dapat menghitungnya sebagai berikut:

lim(x->-2) (x^2 + 3x - 2) / (x + 2) = (-2)^2 + 3(-2) - 2 / (-2 + 2) = 4 - 6 - 2 / 0

Namun, pada pembagian dengan 0, limit tidak terdefinisi atau dinyatakan sebagai tak hingga. Jadi, nilai limit dari fungsi tersebut saat x mendekati -2 tidak terdefinisi.

Penjelasan dengan langkah-langkah:

Semoga Bermanfaat


26. Contoh soal teorema limit kelas 11


Lim
x->2. (4x+6)
=4(2)+6
=8+6
=14

27. Contoh soal limit dan penyelesaiannya


Jawaban:

Jawaban Terlampir di atas

- PelitaRayaSchool -


28. contoh soal limit tak terhingga​


ini yaaa lim tak hingga kan


29. apakah ada contoh soal cerita untuk limit?


lim x"+4x+-2 note = (") pangkat 2 x->2

30. contoh soal limit beserta solusinya


lim x mendekati 2 = (x² - 2)+3x
penyelesaian :
lim x > 2 = (2² - 2) + 3×2
              = (4-2) + 6 = 8

Semoga membantu :)

31. contoh soal limit yg di matematika


Jawab:

[tex]\displaystyle \lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}=\cdots[/tex]

Penjelasan dengan langkah-langkah:

[tex]\displaystyle \lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}\\=\lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}~\frac{\sqrt{1+\tan x}+\sqrt{1+\sin x}}{\sqrt{1+\tan x}+\sqrt{1+\sin x}}\\=\lim_{x\to 0}\frac{1+\tan x-(1+\sin x)}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\frac{\sin x}{\cos x}-\sin x}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}[/tex]

[tex]\displaystyle =\lim_{x\to 0}\frac{\frac{\sin x-\sin x\cos x}{\cos x}}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\sin x(1-\cos x)}{x^3\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\sin x\left [ 1-\left ( 1-2\sin^2\frac{x}{2} \right ) \right ]}{x^3\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}[/tex]

[tex]\displaystyle =2\lim_{x\to 0}\frac{\sin x}{x}\lim_{x\to 0}\left ( \frac{\sin\frac{x}{2}}{x} \right )^2\lim_{x\to 0}\frac{1}{\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=2(1)\left ( \frac{\frac{1}{2}}{1} \right )^2\frac{1}{1(1+1)}\\=\frac{1}{4}[/tex]


32. contoh soal limit fungsi dan jawaban


limit dari x mendekati 3 dari (x^2 + 3x - 18)/(x^2 - 3x)

jawabannya 3

33. Contoh soal limit fungsi


Jawaban:

CONTOHNYA ADA PADA GAMBAR

Penjelasan dengan langkah-langkah:

SEMOGA MEMBANTU

SEMANGAT BELAJAR


34. tlg contoh soal limit dong


1. Nilai dari lim x→∞ [√(x+1) - √(x-1)] adalah …..
a. -∞
b. -2
c. 0
d. 2
e. ∞

2. Nilai dari lim x→∞ [√(x2+2) - √x2-x)] adalah …..
a. -∞
b. – 1
c. 0
d. 1
e. ∞
klik aja DOC

tolong jadikan yang terbaik ya

35. Contoh soal soal limit fungsi beserta jawabannya


Pertanyaan

lim x → 3 : x² + 1

Jawaban

lim x → 3 : 3² + 1

= 9 + 1

= 10


36. contoh soal dan jawaban limit dalam bentuk akar


Jawab:

8 ⅓

Penjelasan dengan langkah-langkah:

[tex]\displaystyle \lim_{x\to\infty}\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{\sqrt{25x^4+x^3-2x^2}-\sqrt{25x^4-5x^3-3x^2}}\\=\lim_{x\to\infty}\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{\sqrt{25x^4+x^3-2x^2}-\sqrt{25x^4-5x^3-3x^2}}~\frac{\sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}}{\sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}}[/tex]

[tex]\displaystyle=\lim_{x\to\infty}\frac{\left ( \sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}\right )\left ( \sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}\right )}{25x^4+x^3-2x^2-\left ( 25x^4-5x^3-3x \right )}\\=\lim_{x\to\infty}\frac{x\left ( \sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}\right )\left ( \sqrt{25x^2+x-2}+\sqrt{25x^2-5x-3}\right )}{6x^3+x^2}[/tex]

[tex]\displaystyle =\lim_{x\to\infty}\frac{\frac{x}{x}~\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{x}~\frac{\sqrt{25x^2+x-2}-\sqrt{25x^2-5x-3}}{x}}{\frac{6x^3+x^2}{x^3}}\\=\lim_{x\to\infty}\frac{\left ( \sqrt{4+\frac{4}{x}-\frac{9}{x^2}} +\sqrt{9+\frac{1}{x}-\frac{4}{x^2}}\right )\left ( \sqrt{25+\frac{1}{x}-\frac{2}{x}} -\sqrt{25-\frac{5}{x}-\frac{3}{x^2}}\right )}{6+\frac{1}{x}}\\=\frac{25}{3}\\=8\tfrac{1}{3}[/tex]


37. Contoh soal limit fungsi kelas 11


semoga bermanfaat ok jangan lupa follow

38. contoh soal fungsi limit dalam bidang ekonomi​


Penjelasan dengan langkah-langkah:

maaf jika salah

semlga membantu :)


39. Contoh soal limit tak tentu dan tentu


Jawaban:

Contoh Soal Limit Fungsi Aljabar

Penjelasan dengan langkah-langkah:

maaf kalo salah kak


40. Contoh soal teorema limit


1. Buktikan kalau [tex]\lim_{n \to 0} \frac{sin(x)}{x}[/tex] = 1! (Kalau pakai L'Hopitals' Rule, akan terjadi Circular Reasong, jadi pakai Trigonometri)

2. Buktikan kalau [tex]\lim_{n \to 0} \frac{1-x}{x}[/tex] itu tidak ada!

3. Buktikan [tex]\lim_{n \to \infty} \frac{cos(x)}{x}[/tex] itu 0 dengan menggunakan sandwich/squeeze theorem

4. Buktikan L'Hopital's Rule


Video Terkait

Kategori matematika